



## Call for Special Session Proposal

The ESARS-ITEC 2024 Organizing Committee invites proposals for Special Sessions addressing new or emerging topics in electrical transportation systems. The goal is to provide a forum for focused discussions on either new topics or innovative applications of established approaches.

Special Session proposals should include the following details:

- 1. Title of the Proposed Special Session
- Names, Affiliations, and Contact Information of Session Organizers 2.
- **Brief Biographies of Session Organizers** 3.
- 4. **Brief Description of the Proposed Session Topic** 
  - Discuss why this topic is suitable for an ESARS-ITEC 2024 special session.
- 5. List of Six (6) Contributed Papers
  - Include titles, author names and affiliations, and short abstracts.
  - Note: Upon acceptance of the special session proposal, contributed papers will be submitted like regular papers. Organizers are limited to authoring at most one paper in the session.

Proposals will be evaluated based on:

- Topic timeliness and expected impact.
- Qualifications of the organizers.
- List of contributed papers and their authors.

Accepted Special Session Papers will undergo a review process similar to that of regular papers submitted to ESARS-ITEC 2024. All proposal should be submitted via the specific form, available HERE.

#### Main topics of ESARS-ITEC 2024 include but are not limited to:

#### AIRCRAFT ELECTRICAL SYSTEMS

- Advanced concepts and technologies to enable the all- electric aircraft Embedded Systems Electromechanical actuators Electrical auxiliary systems New storage system

- Power generation and distribution
  New sources of aircraft main propulsive powe
  Onboard electrical systems architectures Onboard energy management
- Electrical Drives and Power Systems
   Design of Motors and their Control
- Design of Motors and Confederate Fault Diagnostics
  Power Systems Control and Stability
  Reliability
- SHIPBOARD ELECTRICAL SYSTEMS
- Electrical propulsion
   Converters and Drives
   All electric and hybrid ships

- Integrated power systems
   System integration
   Storage systems
   Modeling, simulation and design methodologies

- Power Generation
  Power System Control
  Stability and quality

- Ship functional safety
   Reliability and dependability
   Reconfigurability, diagnostics
- Electric solutions for improving efficiency
- Actuators On-Board energy management
- RAILWAY AND ROLLING STOCK ELECTRICAL
- - Innovative converter and motor topologies Onboard Energy management
- Power Supply Systems Substations
- Substations Wayside storage system Overhead systems and Conductor rail systems Energy management
- Autonomous and dual mode vehicle
   New energy sources and storage systems
- Electric-Hybrid power trains Multi winding transformer and rectifier
- Modeling, simulation and design methods
   Complex Systems
   Load flow, optimization method design and control
- - Safety and security systems Railway signaling and interoperability syst Light railways vehicles for urban mobility Metro and underground urban railways syst

- Onboard energy sources and storage systems: design, control and integration

- - Powertrain systems
     Electric propulsion systems
     Traction power converters
     Powertrain testing and validation
     Traction electric motor design

  - Powertrain control strategies Range and weight optimization
- Auxiliary systems
   Switching power supplies
- Power steering Ancillary services

  - Vehicle environment
     EMI/EMC in the vehicle environment
     Modelling, simulation, vehicle-level design methods and tools
     Safety and reliability
     Tools and methods for onboard diagnostic

## INFRASTRUCTURES FOR E-MOBILITY &

- E-mobility
   Grid interface technologies
   Microgrids for charging station facilities
   Hyper-charge stations
   Ultrafast charging station (UFCS) and impact
- on the grid on the grid Vehicle-to-grid (V2G), vehicle-to-infrastructure (V2I), and vehicle-to-home (V2H) interfaces Energy Storage Systems and RES integration

- DC & AC Distributed architectures Smart EV charging scheduling Electrification of heavy-duty and off-road

- l-mobility Novel hydrogen storage technologies Fuel cell converters
- RES integration for green hydrogen production Sensors, actuators, and monitoring systems for hydrogen plants
- ENERGY STORAGE AND FUEL CELL SYSTEMS

- Modeling
  Thermal management
  Interface power converters
  Batery Management Systems
  SOC and SOH identification methods
  Hybrid energy storage systems

## BATTERY CHARGERS: WIRELESS, FAST, AND ULTRA-FAST

- On-board/off-board smart charging infrastructures
  - Isolated and nonisolated charger Stationary and dynamic wireless charging in

  - Design and control issues
    Partial power processing architectures
    Integrated powertrain converter and batery

# AI AND SOFTWARE SYSTEMS FOR TRANSPORTATION ELECTRIFICATION

Please note that papers selected for special sessions are more likely to be eligible for extension in the IEEE Transactions on Transportation Electrification (TTE) journal. If you have any questions, feel free to contact the Conference Special Session Chair Prof. Fabrizio Marianetti at marianetti@unicas.it.

